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Executive Summary

A semi-analytic solution is described for planar radiation-hydrodynamic shock waves in the equilibrium-
diffusion (1-T ) limit. The solution requires finding numerically the root of a polynomial and integrating
a nonlinear ordinary differential equation. This solution may be used to verify codes that use the
equilibrium-diffusion radiation model, or for more advanced radiation models in the optically-thick limit.
The conditions for continuous solutions are also discussed.

1 Introduction

This study details a semi-analytic solution for planar radiation-hydrodynamic shock waves in the equilibrium-
diffusion (1-T ) limit. The solution may be used to verify codes that use the equilibrium-diffusion radiation
model. Moreover, any radiation model should be able to compute these shocks when in the optically-thick
limit.

Radiation-hydrodynamic shocks are described in detail by Zel’dovich and Raizer [1] and Mihalas and
Mihalas [2]. However, the solutions in past work are typically approximate and thus inappropriate for code
verification. The focus of this study is to:

1. review the past work on radiation-hydrodynamic shocks,

2. derive the equations for the semi-analytic solution,

3. present the numerical solution procedure and example solutions,

4. discuss the regimes where the solution is continuous.

The shock structure for nonequilibrium radiation models is more complicated than for the equilibrium-
diffusion model and these differences will also be highlighted.

2 Equilibrium-Diffusion System

Assume a single material, strength or viscous effects are negligible, the radiation optical depth is small, and
material speeds are non-relativistic. Then radiation hydrodynamics is described by the equilibrium-diffusion
system, which may be written in nondimensional form as (see, for example, [2, 3])

∂t





ρ
ρv

ρE∗



 + ∂x





ρv
ρv2 + p∗

(ρE∗ + p∗)v



 = ∂x





0
0

κ∂xT 4



 , (1a)
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where

p∗ = p +
1

3
PT 4, (1b)

e∗ = e +
1

ρ
PT 4, (1c)

E∗ = e∗ +
1

2
v2, (1d)

and P is a nondimensional constant. The material’s equation-of-state (EOS) is assumed to be of the form
p(ρ, T ) and e(ρ, T ). For this radiation model, the radiation effectively modifies the material EOS to p∗(ρ, T )
and e∗(ρ, T ). See Ref. [3] for an analysis of the radiation-modified EOS.

In this study, dimensional quantities are denoted with a tilde; for example, p̃. The nondimensional
variables are defined in terms of their dimensional counterparts as

x =
x̃

L̃
, t =

t̃ã0

L̃
, ρ =

ρ̃

ρ̃0
, v =

ṽ

ã0
, (2)

e =
ẽ

ã2
0

, p =
p̃

ρ̃0ã2
0

, T =
T̃

T̃0

, κ =
κ̃T̃ 4

0

ρ̃0ã3
0L̃

,

where the subscript-“0” indicates a constant reference state. Here ã refers to the material soundspeed and
L̃ is a reference length. The dimensional diffusion coefficient may be written as

κ̃ =
α̃Rc̃

3σ̃t
, (3)

where α̃R is the radiation constant (7.55 × 10−16N/(K4m2)), c̃ the speed of light (3 × 108m/s), and σt the
total radiation cross-section. The nondimensional constant P is given by

P =
α̃RT̃ 4

0

ρ̃0ã2
0

. (4)

For a given EOS, the character of the solution is determined by the shock Mach number (M), the κ
function, and P. The function κ controls the amount of thermal diffusion and in particular, the extent of
the radiation precursor in front of the shock. The constant P is a measure of the influence of radiation on
the flow dynamics; P is proportional to the ratio of radiation pressure to material pressure or alternatively,
radiation energy to material energy. The “low-energy density” regime assumes that the PT 4 terms are small
in Eqs. (1b,1c), so that e∗ → e and p∗ → p. The “high-energy density” regime retains these terms and is
the focus of this study.

3 Problem Statement

We will select a reference frame where the shock speed is zero. The non-zero shock speed case may be found
through a Galilean transformation. The reference state (subscript-0) will refer to the far upstream conditions
(x → −∞), while the subscript-1 refers to far downstream conditions (x → ∞), with v0 ≡ M > 1. Note
that in the shock reference frame, M is the upstream Mach number with respect to the material soundspeed.
Also, the normalization (2) gives that ρ0 = 1 = T0.

The problem statement is then as follows:

• Given:

– The values P and M.

– The functions p(ρ, T ), e(ρ, T ), κ(ρ, T ).
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• Calculate:

– The functions ρ(x), v(x), T (x).

Much of the previous work on this problem is described in Zel’dovich and Raizer [1] and Mihalas and
Mihalas [2]. The shock problem is a specific case of the class of equilibrium-diffusion, radiation-hydrodynamic
solutions derived by Coggeshall and Axford [4]. Recent work on the shock problem is also given in Ref. [5].
For the low-energy density regime, see also the classic blast-wave solution in Ref. [6]. Non-equilibrium shock
solutions are described in Refs. [1, 2, 7–10].

4 Solution Phenomenology

In this section, we review the structure of radiation-hydrodynamic shock waves. The physics of these shocks
is explained very well in Refs. [1, 2, 7–9]; only the minimum information needed will be repeated here.

First, we’ll describe the shock structure for a non-equilibrium model of radiation, following Refs. [1,2,8,9].
As the material moves through the shock structure, it passes through several regions, in the following order:

1. Radiation Precursor: The hot post-shock material radiates, heating the flow ahead of the shock from
T = T0 to T = Tp > T0. The value of Tp determines the character of the shock:

• Subcritical shock: Tp < T1.

• Supercritical shock: Tp ≡ T1.

See Fig. 1.

2. For supercritical shocks and if ρp ≡ ρ1, then all variables are continuous through the shock profile.
If instead ρp < ρ1 (true for all subcritical shocks), then the flow passes next through the following
regions:

(a) Hydrodynamic Shock: A hydrodynamic shock then further heats the material from T = Tp to
T = Ts > T1. For the Euler equations, this heating is discontinuous. Note that even if the
the state-p conditions are in radiative equilibrium, the hydrodynamic shock discontinuity breaks
equilibrium; the state-s is always a non-equilibrium state. The spike to T = Ts is referred to as
the Zel’dovich spike [2, 8, 9].

(b) Relaxation Region: Through radiative cooling, the material cools from T = Ts to its final post-
shock state, T = T1. The width of the relaxation region is proportional to the post-shock optical
depth.

The equilibrium-diffusion shock structure is simpler than the general picture. Mathematically, because of
the diffusion term in the system (1), the temperature for this model must be continuous. Consequently, the
nearest temperature profile that may be represented by the equilibrium-diffusion model is the supercritical
profile, but that ignores the Zel’dovich spike and its subsequent relaxation region. Roughly speaking, because
the optical depth must be small for the equilibrium-diffusion system (1) to apply, and the spike width is
proportional to the optical depth, it seems reasonable to ignore the spike region.

The equilibrium-diffusion shock structure is then as follows (see Fig. 1b):

1. Radiation Precursor: Same as non-equilibrium model, supercritical shock case. If ρp ≡ ρ1, then all
variables are continuous through the shock profile. If instead ρp < ρ1, then the flow passes through an
isothermal shock.

2. Isothermal Shock: An isothermal, hydrodynamic shock transitions the flow from (ρ, v)p to (ρ, v)1. We
emphasize that Tp = T1. There is no relaxation region after the shock.
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Figure 1: Subcritical and supercritical (ρp < ρ1) shock structures. Only non-equilibrium radiation models
will produce the subcritical solution. In both cases, the temperature is discontinuous from Tp to Ts. In the
supercritical case, non-equilibrium models can compute the Zel’dovich spike (T = Ts) region, whereas the
equilibrium-diffusion structure follows the dashed line.

Although the equilibrium-diffusion model ignores the Zel’dovich spike, one can nevertheless estimate the
spike’s maximum temperature. We will discuss the Zel’dovich spike further in §7.

The solution procedure is then as follows:

1. Determine the Overall Shock Jump: Apply the overall Rankine-Hugoniot jump relations, including
radiation effects, to determine the far downstream state (ρ, v, T )1.

2. Determine the Radiation Precursor: The radiation precursor is found by integrating the diffusion
operator from temperature T = Tp(= T1) to T = T0.

3. Determine the Zel’dovich Spike: This step is optional and applies only if ρp < ρ1. Knowing the
conditions at the precursor state, (ρ, v, T )p, one is only able to compute the spike conditions (ρ, v, T )s.
The temperature profile of the relaxation region requires a non-equilibrium model.

Each of these steps is described in the following sections.

5 Overall Shock Jump

This section is actually applicable to any radiation model, if it is assumed that the radiation and hydro-
dynamics equilibrate far from the shock. In a reference frame where the shock speed is zero, the jump
conditions for Eq. (1) are





ρv
ρv2 + p∗

(ρE∗ + p∗)v





0

=





ρv
ρv2 + p∗

(ρE∗ + p∗)v





1

(5)

Note that the radiation terms are proportional to P and are independent of κ. The velocities may be
eliminated to yield the Hugoniot relation

e∗1 − e∗0 +
1

2
(p∗0 + p∗1)

(

1

ρ1
− 1

ρ0

)

= 0. (6)
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Also, v1 may be eliminated from the mass and momentum equations to give

p∗1 − p∗0
ρ1 − ρ0

= M
2 ρ0

ρ1
. (7)

If P and the upstream (“0”) conditions are given, then Eqs. (6) and (7) are two equations for two unknowns,
ρ1 and T1. Mass conservation may then be used to find v1:

v1 =
ρ0M

ρ1
. (8)

Just as for the pure hydro case (P ≡ 0), an entropy condition must be invoked to ensure uniqueness. The
entropy s∗ follows from the concept of a radiation-modified EOS [3] and satisfies

Tds∗ = de∗ + p∗d

(

1

ρ

)

. (9)

The entropy condition for the shock is s∗1 ≥ s∗0, which requires

M ≥ a∗

0, (10)

where a∗ is the radiation-modified soundspeed. See Ref. [3] for the expression for a∗ for a general EOS.

5.1 Shock Jump for a γ-Law EOS

A γ-law EOS assumption simplifies matters somewhat. In this case, ã2
0 = γRT̃0 and p̃ = ρ̃RT , where R is

the material gas constant and γ the ratio of specific heats. In nondimensional form, the EOS becomes

p(ρ, T ) =
ρT

γ
, e(ρ, T ) ≡ e(T ) =

T

γ(γ − 1)
. (11)

In order to shorten the expressions, this section will use the fact that ρ0 = 1 = T0. The radiation-modified
soundspeed in (10) may be written as [3]

(a∗

0)
2 = 1 +

4

9
P(γ − 1)

4Pγ + 3(5 − 3γ)

1 + 4Pγ(γ − 1)
. (12)

Equation (6) is a quadratic in ρ1 and the positive root is

ρ1(T1) =
b(T1) +

√

b(T1)2 + 12(γ − 1)2T1 [3 + γP(1 + 7T 4
1 )]

6(γ − 1)T1
, (13)

where
b(T1) = 3(γ + 1)(T1 − 1) − Pγ(γ − 1)(7 + T 4

1 ). (14)

Equation (7) may be written as

3ρ1(ρ1T1 − 1) + γPρ1(T
4
1 − 1) = 3γ(ρ1 − 1)M2. (15)

Combined with Eq. (13), the expression (15) represents a single equation for the unknown T1. Although
we prefer the form of Eqs. (13,15), they may also be manipulated into a single ninth-order polynomial for
T1 [5].

In general, no closed-form solution for T1 exists; Eq. (15) must be solved numerically. For small P, a
reasonable initial guess is the P = 0 solution:

T1 =
(1 − γ + 2γM2)(2 + (γ − 1)M2)

(γ + 1)2M2
. (16)
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In the limit of large P, Eq. (13) reduces to

ρ1(T1) ≈
1 + 7T 4

1

7 + T 4
1

. (17)

Note that the maximum compression is given by ρ1 = 7 and corresponds to the maximum for γ = 4/3, which
is the effective γ for photons. Also, Eq. (12) becomes

(a∗

0)
2 ≈ 4

9
P (18)

for large P. The effective Mach number may be defined as

M
∗ = M/a∗

0. (19)

It follows that Eq. (15) reduces to

γPρ1(T
4
1 − 1) ≈ 3γ(ρ1 − 1)(M∗)2

(

4

9
P

)

. (20)

Using Eq. (17), this relation reduces to

T 4
1 ≈ 1

7
[8(M∗)2 − 1]. (21)

6 Radiation Precursor

Knowing the overall shock jump from the previous section, the radiation precursor may now be determined.
Integrate once the steady-state energy equation of the system (1) to obtain

4κT 3 dT

dx
=

(

ρe + p +
1

2
ρv2 +

4

3
PT 4

)

v −
(

e0 + p0 +
1

2
M

2 +
4

3
P

)

M, (22)

where the integration constant was evaluated so that the derivative vanishes at the reference state (“0”).
Mass conservation gives

v = M/ρ, (23)

so that Eq. (22) may be written as

4κT 3 dT

dx
= M

[

e − e0 +
p

ρ
− p0 +

1

2
M

2

(

1

ρ
− 1

)

+
4

3
P

(

T 4

ρ
− 1

)]

. (24)

Momentum conservation gives

p − p0 = M
2

(

1 − 1

ρ

)

+
1

3
P

(

1 − T 4
)

. (25)

Given e(ρ, T ) and p(ρ, T ), in general Eqs. (24,25) must be integrated numerically in order to find the shock
profile.

6.1 Precursor for a γ-Law EOS

For a γ-law EOS, Eq. (24) becomes

dT

dx
=

6Cp(T − 1)ρ2M + 3(1 − ρ2)M3 + 8P(T 4 − ρ)ρM

24κρ2T 3
, (26)
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where

Cp =
1

γ − 1
. (27)

Equation (25) becomes a quadratic in ρ(T ) whose solution is

ρ(T ) =
m(T ) −

√

m(T )2 − γTM2

T
, (28)

where

m(T ) =
1

2
(γM

2 + 1) +
γP

6
(1 − T 4). (29)

Here, the root was chosen that satisfies ρ(T0) = ρ0 = 1.
The right-hand-side of Eq. (26) may now be expressed solely as a function of T and may be integrated

numerically. The integration begins at T = T1, where we arbitrarily set x = 0. The temperature profile is
computed by integrating (26) to x → −∞, or until the right-hand side of (26) is sufficiently small.

We also now have enough information to compute the precursor state (ρ, v, T )p. Equation (28), evaluated
at T = Tp = T1, gives ρp. Then, Eq. (23) may be used to compute vp.

7 Isothermal Shock and the Zel’dovich Spike

If the ρp < ρ1, then an isothermal shock jump is present in the equilibrium-diffusion solution. The isothermal
shock transitions the state (ρ, v, T )p to (ρ, v, T )1, with T1 = Tp. For nonequilibrium radiation models, the
condition ρp < ρ1 will create a Zel’dovich spike. Although solutions to the equilibrium-diffusion equations do
not predict the Zel’dovich spike, the spike state (ρ, v, T )s may nevertheless be estimated from an equilibrium-
diffusion solution. This is because for supercritical shocks, the precursor and spike states are solely a function
of the overall jump conditions, and thus are independent of radiation model employed. With additional
simplifying assumptions than made here, other estimates for Ts are given in Refs. [1, 2].

The assumption made here is that the hydrodynamic deviations from a Maxwellian velocity distribution
(e.g., viscous effects) occur on a much smaller length scale than radiation effects. In other words, the Euler
equations hold, even on what may be very small length scales. Consequently, the jump from the state
(ρ, v, T )p to (ρ, v, T )s is governed by a hydrodynamic shock. For a γ-law EOS, the spike values may be found
by using the classic hydro-only shock relations:

ρs = ρp

(γ + 1)M2
p

2 + (γ − 1)M2
p

, (30a)

vs = M/ρs, (30b)

Ts = Tp

(1 − γ + 2γM2
p)(2 + (γ − 1)M2

p)

(γ + 1)2M2
p

, (30c)

where Mp is the Mach number at state-p:

Mp =
vp

√

Tp

. (30d)

Again, to compute the temperature relaxation region downstream of Ts requires a non-equilibrium radiation
model; see [7–10].

7.1 Conditions for an Isothermal Shock

As discussed above, if ρp < ρ1, an isothermal shock exists in the equilibrium-diffusion solution and a
Zel’dovich spike in nonequilibrium radiation models. In this section, we discuss the ranges of M and P that
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give ρp < ρ1. Following [1, Ch. VII, §18], the ρp < ρ1 condition can also be stated as η1 < ηmax, where
η = 1/ρ and ηmax is to be determined.1

The value of ηmax may be determined as follows. For any point on the Hugoniot, Eq. (15) may be written
as

T − η + αη(T 4 − 1) = γη(1 − η)M2, (31)

where α = γP/3. This is a relation for η(T ), which has a maximum at

ηmax =
1

2
− 1

2γM2

[

αT 4
max − α − 1

]

. (32)

Solve (32) for Tmax and substitute back into Eq. (31) for T to obtain

α(γη2
maxM

2)4 = 1 + α + (1 − 2ηmax)γM
2. (33)

The relation (33) may be used to determine the boundary between solutions that contain an isothermal
shock, and those that are continuous in all variables. The boundary is whenever ηmax = η1, which may be
determined numerically and is plotted in Fig. 2 for γ = 5/3.

If P is large enough, then an isothermal shock does not appear for any M. For γ = 5/3 we maximized
numerically P(M) in equation (33) to give P ' 2.53 as the condition for continuous solutions (see Fig. 2).
Note also that Eq. (17) was derived for large P and holds anywhere along the profile; Eq. (17) also implies
that ρ is continuous.

For small values of P, it’s apparent that an isothermal shock will occur over a range of M; following
Ref. [5], we denote this range as

Miso < M < Mcont. (34)

We can estimate Miso and Mcont as follows. The value of Miso is determined by ignoring the radiation terms
in Eq. (33) (set α = 0) and using the hydro-only shock value for η1; see [1, Ch. VII, §3]. We obtain

Miso ≈
√

3γ − 1

γ(3 − γ)
. (35)

An estimate for Mcont is a bit more difficult. By ignoring the upstream material temperature and pressure,
Zel’dovich and Raizer derived the following estimate for ηmax [1, Eq. (7.76)]:

ηmax,ZR =
1

4 +
√

2 + ρ10
, (36)

where ρ10 = (γ + 1)/(γ − 1). We expect Mcont to be large, so terms that are not proportional to M may be
dropped from Eq. (33). Solve the resulting expression for M and evaluate at ηmax = ηmax,ZR to obtain:

Mcont ≈
(

1 − 2ηmax,ZR

αγ3η8
max,ZR

)1/6

. (37)

The estimates Miso and Mcont are shown in Fig. 2. These estimates are very accurate for small P.
Also shown in Fig. 2 is an alternative estimate for Mcont, given in Bouquet et al [5]:

Mcont(Bouquet el al) =

(

5(77)

6αγ3

)1/6

, (38)

which has the correct trend, but is not as accurate for small P as Eq. (37).

1Reference [5] states incorrectly that the condition for no isothermal shock, for large M, as ηmax ≤ 1/7.
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Figure 2: The isothermal shock region for γ = 5/3. The shaded region indicates P,M pairs that result in
an isothermal shock. No isothermal shock exists if P ' 2.53, for any M. The estimate Miso is given by Eq.
(34), Mcont by Eq. (37), and “Mcont (Bouquet et al)” by Eq. (38).
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8 Summary

For a γ-law EOS, the calculation of the shock solution may be summarized as follows:

1. Given: P, M, γ, κ(ρ, T ). Recall that we use nondimensional variables so that ρ0 = 1 = T0. Also, M

must satisfy the inequality (10).

2. Using Eq. (13) for ρ1(T ), solve Eq. (15) for T1.

3. Knowing T1, Eq. (13) gives ρ1.

4. Use Eq. (8) to compute v1.

5. Use Eq. (28) to integrate (26) from x = 0 (where T = Tp = T1), in the (−x)-direction. This gives T (x)
in the precursor region.

6. Knowing T (x), compute ρ(x) and v(x), using Eqs. (28,23).

7. Optional: For cases where ρp < ρ1, an isothermal shock exists. Estimate the Zel’dovich spike state
using Eqs. (30).

8. Optional: Apply a Galilean transformation to a reference frame where the shock is moving with velocity
vs. Specifically, set v := v + vs.

Sample calculations are given in Figs. 3-6. In Figs. 3-5, the Mach number is varied through the isothermal
shock and continuous regimes. Figure 6 shows the effect of using a nonlinear diffusion coefficient, with a
bremsstrahlung-like functional dependence [1].

These calculations were for a γ-law gas and future work should consider a more general EOS. The main
difficulty with a general EOS is that Eq. (25) is then an implicit function for ρ(T ), which must be solved
numerically in each integration step of Eq. (24). The overall jump conditions are also more complicated and
solutions for a general EOS have been covered extensively in the literature.
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Figure 3: Shock profile for γ = 5/3, M = 10, κ = 0.0001, P = 0.0001. For this case, Miso < M < Mcont, so
an isothermal shock exists. The symbol in plots (a), (b), and (c) indicates the Zel’dovich spike value. Plot
(d) compares T with the low-energy density (P = 0) solution.
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Figure 4: Same parameters as Fig. 3, but with M = 50. For this case, M > Mcont, so that all variables are
continuous through the profile.

-0.005 -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004 0.005
x

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

ρ

(a) Density

-0.005 -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004 0.005
x

0.95

1

1.05

1.1

1.15

1.2

1.25

T

(b) Temperature

Figure 5: Same parameters as Fig. 3, but with M = 1.2. For this case, M < Miso, so that all variables are
continuous through the profile.



To Distribution

LA-UR-06-3853 -13- May 31, 2006

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
x

1

2

3

4

5

ρ

(a) Density

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
x

0

10

20

30

T

(b) Temperature

Figure 6: Comparison of results from Fig. 3 (dashed line, κ = 0.0001) with results using κ = (4×10−9)T 7/2/ρ
(solid line). The coefficient of κ was chosen to give roughly the same precursor extent for each case.
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